GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein.
نویسندگان
چکیده
AIMS Morphine signaling via the μ-opioid receptor (MOR) is coupled to redox-dependent zinc release from endogenous stores. Thus, MOR activation stimulates the complex formed by RGSZ2 (a regulator of G protein signaling) and neural nitric oxide synthase (nNOS) to produce NO, and to recruit PKCγ and Raf-1 in a zinc-dependent manner. Accordingly, we investigated whether redox regulation of zinc metabolism was unique to the MOR, or if it is a signaling mechanism shared by G-protein coupled receptors (GPCRs). RESULTS A physical interaction with the RGSZ2-nNOS complex was detected for the following GPCRs: neuropeptides, MOR and δ-opioid (DOR); biogenic amines, 5HT1A, 5HT2A, α2A, D1 and D2; acetylcholine, muscarinic M2 and M4; excitatory amino acid glutamate, mGlu2 and mGlu5; and derivatives of arachidonic acid (anandamide), CB1. Agonist activation of these receptors induced the release of zinc ions from the RGSZ2 zinc finger via a nNOS/NO-dependent mechanism, recruiting PKCγ and Raf-1 to the C terminus or the third internal loop of the GPCR. INNOVATION A series of GPCRs share an unexpected mechanistic feature, the nNOS/NO-dependent regulation of zinc ion signaling via a redox mechanism. The RGSZ2 protein emerges as a potential redox zinc switch that converts NO signals into zinc signals, thereby able to modulate the function of redox sensor proteins like PKCγ or Raf-1. CONCLUSION Redox mechanisms are crucial for the successful propagation of GPCR signals in neurons. Thus, dysfunctions of GPCR-regulated NO/zinc signaling may contribute to neurodegenerative and mood disorders such as Alzheimer's disease and depression.
منابع مشابه
Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling
BACKGROUND In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response...
متن کاملThe σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control
AIMS The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinocicep...
متن کاملSUMO-SIM Interactions Regulate the Activity of RGSZ2 Proteins
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine t...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antioxidants & redox signaling
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2012